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This paper presents a fresh analysis of the thermal conductivity surface Of argon 
at temperatures between 100 and 325 K with pressures up to 70 MPa. The new 
analysis is justified for several reasons. First, we discovered an error in the. Com- 
pression-work correction, which is applied when calculating thermal conduc-  
tivity and thermal diffusivity obtained with the transient hot-wire technique. The 
effect of the error is limited to low densities, i.e., for argon below 5 tool - L -  1. 
The error in question centers on the volume of fluid exposed to compression 
work. Once corrected, the low-density data agree very well with the available 
theory for both dilute-gas thermal conductivity and the first density coefficient 
of thermal conductivity. Further, the corrected low-density data, if used in con- 
junction with our previously reported data for the liquid and supercritical 
dense-gas phases, allow us to represent the thermal conductivity in the critical 
region with a recently developed mode-coupling theory. Thus the new surface 
incorporates theoretically based expressions for the dilute-gas thermal conduc- 
tivity, the first density coefficient, and the critical enhancement. The new surface 
exhibits a significant reduction in overall error compared to our previous 
surface which was entirely empirical. The uncertainty in the new thermal 
conductivity surface is + 2.2 % at the 95 % confidence level. 

KEY WORDS: argon; liquid; supercritical; surface fit; thermal conductivity; 
transient hot wire technique; vapor. 

1. I N T R O D U C T I O N  

W e  h a v e  s t u d i e d  t he  t h e r m a l  c o n d u c t i v i t y  o f  a r g o n  e x t e n s i v e l y  u s i n g  t he  

t r a n s i e n t  h o t - w i r e  t e c h n i q u e  [ ,1 -5 ] .  I n  o u r  p r e v i o u s  p a p e r  [-5], we r e c o m -  
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mended that a new effort be undertaken to correlate the thermal conduc- 
tivity of argon at low temperatures. This paper presents the results of such 
an effort. While comparing our argon data to recent theories for the dilute- 
gas thermal conductivity, 2o, and the first density coefficient of thermal 
conductivity, )-1, we discovered an error in the compression-work correc- 
tion which is applied when calculating thermal conductivity and thermal 
diffusivity. The effect of the error is limited to low densities, i.e., below 
5 mol.  L 1 for argon. The error in question centers on the volume of fluid 
exposed to compression work and is described in detail in Section 2. We 
present corrected values for the thermal conductivity and thermal dif- 
fusivity of argon at densities below about 5 mol.  L -  1 in Section 3. We 
show that the revised low-density values are in good agreement with the 
theories for both 2 0 and 21 in Section 4. The corrected low-density data, if 
used in conjunction with our previously reported data for the liquid and 
supercritical dense-gas phases, allow us to represent the thermal conduc- 
tivity in the critical region with a recently developed mode-coupling theory 
as discussed in Section 5. Finally, the development of the new thermal 
conductivity surface is given in Section 6. 

2. C O M P R E S S I O N - W O R K  C O R R E C T I O N  

The transient hot-wire technique is widely accepted as an accurate 
method for measuring the thermal conductivity of fluids. The working 
equation for the temperature rise at the surface of an idealized wire is given 
by 

q {4at~ q l n ( 4 a ) +  q__q_ln(t) (1) 
A Tid(ro, T) = ~ In \ r ~ J  = ~ r ~  4~2 

In Eq. (1), q is the power input per unit length of wire, t is the elapsed time 
from the start of a step power input, 2 is the fluid thermal conductivity, 
a = 2/pCp is the fluid thermal diffusivity, r o is the radius of the wire, p is 
the fluid density, Cp is the fluid isobaric heat capacity, and C is the 
exponential of Euler's constant. Using Eq. (1), we obtain the thermal con- 
ductivity from the slope of a line fit through the temperature rise versus 
ln(t). The thermal diffusivity is obtained from the intercept of this line. 

The ideal temperature rise is obtained by adding a number of 
temperature rise corrections to the experimental temperature rise: 

dTid= ATe• + ~ ~ST i (2) 
i 

These temperature rise corrections account for heat transfer mechanisms 
other than one-dimensional radial heat conduction from an infinite line 
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source. These corrections are described in Refs. 6 and 7. The most signifi- 
cant correction accounts for the finite heat capacity of the platinum hot 
wire [7]. We found that there was an error in our implementation of the 
correction which accounts for fluid compression work. This error was due 
to an ambiguous definition in Ref. 6 of the volume over which the compres- 
sion work is done. 

The compression-work correction was originally developed by Healy 
et al. [6]. The effect of the fluid compression-work correction on the 
thermal diffusivity has been investigated by Nieto de Castro et al. [7]. The 
temperature rise associated with the compression-work correction, 67"3, in 
the notation of Ref. 7, is approximated by 

3e(t) 
~T3( t  ) -- (3) pC. 

where AP is the pressure change due to heating the system. The pressure 
rise and 6T3 are assumed to have no spatial dependence and must 
propagate through the entire system volume, V. The calculation of AP 
proceeds by assuming ideal-gas thermodynamics. The temperature change 
in the fluid causes both spatial and temporal variations of the fluid density. 
We can use the conservation of mass and integrate over the entire system 
volume to obtain an expression for AP(t). We then use Eq. (3) and perform 
the integration over the position-independent terms in the temperature 
field, 6T3, and the initial cell temperature. After solving for 6T3, we have 

6T3(t) =---R--R J ~ AT(r, t) dV (4) 
C~Vv 

where Cv is the fluid isochoric heat capacity, R is the gas constant, and 
AT(r, t) is the position-dependent contribution to the temperature field. 

To evaluate Eq. (4), we need an expression for AT(r, t). The most 
straightforward approximation, used in both Ref. 6 and Ref. 7, is to use the 
cylindrically symmetrical solution of the idealized differential equation for 
a line source of heat with boundary conditions specified in Ref. 6. This 
solution looks similar to Eq. (1), except that the factor ln[4at/(rZC)] is 
replaced by E1 [r2/(4at)], where E1 is the exponential integral and r is the 
radial distance. When all temperature corrections are sufficiently small, this 
expression for AT(r, t) should be a valid approximation to lowest order. 
The volume integral of Eq. (4) is converted to a one-dimensional integral 
with the radial distance varying between r o and b, the radii of the cylindri- 
cal cavities containing the hot wires. The axial length for which this solu- 
tion is appropriate is the length over which heat is applied, i. e., the total 
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length L of the long and short hot wires. Thus, Healy et al. [6] equated the 
volume V with the volume of the cylindrical cavity with height L. This 
volume has always been used previously in our data analysis procedure. 

However, the pressure pulse clearly propagates throughout the cell 
volume; our pressure transducer indicates this process. The compression 
work is done on the entire volume containing the fluid, and the mass con- 
servation equation must be applied to this larger volume. It seems clear, 
then, that V in Eq. (4) represents the entire volume which contains the fluid 
sample. We cannot easily calculate the temperature field AT(r, t) in the 
external fluid-filled volumes. These volumes consist of relatively small- 
gauge volumes and capillaries, whose temperature ranges up to room tem- 
perature, and larger volumes near the cell temperature, including the head 
spaces surrounding the top and bottom wire suspensions and a cylindrical 
cavity coaxial with the short hot wire but containing no heating element. 
For these volumes, we set AT(r, t )=  0. This assumption, implicitly made in 
Ref. 7, is certainly not correct, but provides a useful approximation. Our 
expression for 6T3(t), to lowest (zeroth) order in the small quantity rg/4at, 
is 

6T3(t) = qLRt [l_exp(@~t ) . b2pCpE 
pCpCvV + ~  l (~-~Zat)l (5) 

Our Eq. (5) agrees with the result from Ref. 7, except that the factor of b2L 
was inadvertently equated to the system volume in Eq. (15) of Ref. 7. 

The expression for the compression-work correction in Ref. 6 is identical 
to the first term in Eq. (5); the other terms in Eq. (5) are generally negligible 
for our cell at all accessible thermodynamic conditions. The use of the 
volume of the cylindrical cavity, 7~bZL, for V led to a serious overestimation 
of the contribution of 6TB to the measured temperature rise of the hot wire. 
The correction for the compression work becomes more significant as the 
fluid density decreases. In addition, it is apparent that the correction is 
more significant for fluids with small heat capacities. The heat capacities of 
the polyatomic molecules which we have studied in the past are larger than 
those of monatomic molecules such as argon. Since the magnitude of this 
correction is smaller for polyatomic molecules, we did not detect significant 
errors during our previous studies of polyatomic gases. Argon is the only 
fluid for which we have been able to detect significant error due to the 
fluid compression-work correction over the density range which we have 
reported. 

Even though the fluid compression-work correction is derived for the 
cavity volume in Ref. 6, the authors point out that the temperature rise can 
be affected by connecting an external volume to the hot-wire cell. This 



Thermal Conductivity Surface of Argon 969 

implies that they considered the total volume containing the fluid sample 
to be a critical parameter in assessing the compression-work correction. 
The total volume of the vessel is explicitly used in Ref. 7, and increasing the 
fluid volume is again suggested as a method of evaluating the calculation 
of 6T3. It is also suggested that the calculation of 6T3 is not sufficiently 
accurate for direct application to experimental temperature rises but, 
rather, that conditions where this correction is significant should be 
avoided. Based on our reanalysis of the compression-work correction, we 
conclude that the volume used in Eq. (5) should be the total cell volume 
and not the cavity volume which we have previously used. We have not 
addressed the various assumptions, such as insulated boundary conditions 
at the fluid-wall interface, which may lead to additional errors in this 
temperature-rise correction. 

The total volume of our transient hot-wire cell is 27.86 cm 3. Since we 
have been using the cavity volume of 9.89 cm 3, the correction for fluid com- 
pression work which we used was 2.8 times too large. For argon near 
103 K and 0.2 mol.  L -1, at a point with a temperature rise of about 2.2 K 
(about 400 ms from the start of the heating pulse), the old compression- 
work term contributed about 0.014 K or 0.6 %. With the more appropriate 
value of V, the compression-work term becomes about 0.0048 K or 0.2 %. 
The second term in Eq. (5) is about 0.2 x 10 - 6  K,  and the third term is 
about 0.2 x 10 -s K; these terms remain unimportant for our calculations. 
Our previous implementation of the compression-work correction leads to 
a measured thermal conductivity which is 6% too high for the subcritical 
vapor. Under these conditions the erroneous compression-work correction 
leads to a measured heat capacity which is 25 % too small. The compres- 
sion-work correction has significantly altered both the slope and the inter- 
cept of the temperature rise versus log time curve under these conditions. 
When we reanalyze the argon data under these conditions using the total 
cell volume, we obtain heat capacity data which agree well with equation- 
of-state predictions. Therefore, we conclude that we have a better energy 
balance when we use the total cell volume in the fluid compression-work 
correction. No difference in the thermal conductivity or thermal diffusivity 
of argon is obtained at densities above 5 tool. L-1. 

3. CORRECTED LOW-DENSITY RESULTS 

Since there is no difference in the thermal conductivity data at higher 
densities, we report only the altered data points at densities below 
5 m o l . L  -1. The corrected low-density results are provided in Table I. 
These values supercede the values presented by Roder et al. [5]. Some 
additional data points are included in Table I which were not presented by 
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Table I. The Corrected Thermal Conductivity, Thermal Diffusivity, and Heat 
Capacity of Argon at Densities Less than 5 tool. L -1 

Cell Nominal Thermal Thermal Heat 
pressure density conductivity diffusivity capacity 

P p~(T.,P) 2~(T~, p~) l- 109 �9 or p~)] Cp(T~,p~) 
(MPa) (mol-L - l )  ( W . m - I . K  1) (m2.s-:l) ( J . m o l - l . K  1) 

0.271 
0.193 

0.636 
0.458 
0.297 

1.157 
0.852 
0.598 
0.343 

Nominal Temperature, 103 K 

0.336 0.00676 816.9 24.6 
0.236 0.00666 1209.1 23.4 

Nominal temperature, 113 K 

0.760 0.00782 356.8 28.8 
0.528 0.00754 597.4 23.9 
0.332 0.00734 978.3 22.6 

Nominal temperature, 123 K 

1.355 0.00920 207.7 32.7 
0.942 0.00861 330.3 27.7 
0.635 0.00823 510.8 25.4 
0.350 0.00796 973.5 23.3 

Nominal temperature, 133 K 

2.014 2.422 0.01130 106.5 43.8 
1.690 1.904 0.01051 176.5 31.3 
1.400 1.502 0.00987 234.8 28.0 
1.150 1.189 0.00946 313.6 25.4 
0.885 0.882 0.00911 439.1 23.5 
0.587 0.564 0.00877 711.8 21.8 
0.286 0.266 0.00851 1613.6 19.8 

Nominal temperature, 142 K 

2.988 3.755 0.01469 68.3 57.3 
2.577 2.961 0.01272 97.5 44.0 
2.244 2.433 0.01172 126.0 38.2 
1.853 1.899 0.01083 175.2 32.6 
1.476 1.442 0.01024 249.9 28.4 
1.159 1.093 0.00983 339.3 26.5 
0.842 0.768 0.00950 514.2 24.0 
0.446 0.392 0.00915 1065.3 21.9 
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Table I. (Continued) 

Cell 
pressure 

P 
(MPa) 

Nominal 
density 

p,,(T,,, P) 
(tool- L 1) 

Thermal 
conductivity 
2 . ( r . ,  p.) 

(W.m -1 .K -1) 

Thermal 
diffusivity 

[10 9' o~(Tn, P.)] 
(m 2 . s -a) 

Heat 
capacity 

Cp(~r, p.) 
(J .tool -1 .K -1) 

4.153 
3.825 
3.385 
3.060 
2.650 
2.336 
1.732 
1.225 

5.082 
4.800 
4.453 
4.008 
3.573 
3.092 
2.607 
1.933 
1.352 
0.974 
0.500 
0.293 

6.107 
5.659 
4.876 
4.392 
3.548 
2.870 
2.240 
1.255 

4.698 
4.117 
3.439 
2.995 
2.485 
2.126 
1.497 
1.018 

4.835 
4.460 
4.024 
3.502 
3.028 
2.538 
2.076 
1.481 
1.004 
0.710 
0.356 
0.206 

4.372 
3.990 
3.35l 
2.970 
2.336 
1.850 
1.416 
0.771 

Nominal temperature, 157 K 

0.01629 
0.01511 
0.01389 
0.01322 
0.01244 
0.01198 
0.01120 
0.01068 

69.5 
88.4 

111.7 
133.9 
172.5 
206.4 
310.0 
424.6 

Nominal temperature, 173 K 

0.01680 
0.01618 
0.01548 
0.01470 
0.01402 
0.01335 
0.01280 
0.01215 
0.01165 
0.01144 
0.01124 
0.01121 

102.8 
111.2 
113.3 
134.6 
154.4 
202.3 
260.7 
366.4 
529.9 
806.1 

1827.9 
3506.2 

Nominal temperature, 203 K 

0.01733 
0.01683 
0.01599 
0.01553 
0.01480 
0.01430 
0.01387 
0.01325 

138.8 
151.6 
182.0 
219.9 
285.1 
365.8 
469.9 
884.6 

49.9 
41.5 
36.2 
33.0 
29.0 
27.3 
24.l 
24.7 

33.8 
32.6 
34.0 
31.2 
30.0 
26.0 
23.6 
22.4 
21.9 
20.0 
17.3 
15.5 

28.6 
27.8 
26.2 
23.8 
22.2 
21.1 
20.8 
19.4 
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Table I. (Continued) 

Cell Nominal Thermal Thermal Heat 
pressure density conductivity diffusivity capacity 

e p,,(T,,,e) 2,(T,,p,,) [109 .~(T,, pn)] Cp(T,,,p,,) 
(MPa) (mol.L -1) ( W . m - I . K  1) (m2.s-1) ( J . m o l - l . K  ~) 

7.705 
6.951 
6.356 
5.711 
5.035 
4.338 
3.519 
2.699 
1.985 
0.864 

4.874 
4.332 
3.913 
3.470 
3.016 
2.561 
2.042 
1.539 
1.115 
0.474 

Nominal temperature, 223K 

0.01904 155.3 25.2 
0.01835 173.3 24.4 
0.01778 182.9 24.8 
0.01723 203.3 24.4 
0.01669 224.0 24.7 
0.01614 275.8 22.9 
0.01560 324.3 23.6 
0.01507 430.7 22.7 
0.01469 626.2 21.0 
0.01420 1520.9 19.7 

Nominal temperature, 274 K 

9.224 4.350 0.02103 182.1 26.6 
7.434 3.467 0.02001 234.8 24.6 
5.954 2.748 0.01918 294.3 23.7 
4.596 2.099 0.01849 382.7 23.0 
3.266 1.476 0.01797 568.3 21.4 
1.884 0.841 0.01734 942.8 21.9 
1.353 0.601 0.01719 1407.5 20.3 
0.569 0.251 0.01704 3708.2 18.3 

Nominal temperature, 302 K 

10.974 4.575 0.02278 196.8 25.3 
9.573 3.978 0.02197 222.0 24.9 
7.851 3.245 0.02112 263.1 24.7 
6.313 2.595 0.02046 347.7 22.7 
4.432 1.807 0.01955 462.7 23.4 
2.849 1.152 0.01888 752.0 21.8 
0.926 0.371 0.01815 2554.7 19.2 

Nominal temperature, 324 K 

11.400 4,349 0.02354 207.9 26.0 
8.691 3.306 0.02246 265.6 25.6 
7.537 2.862 0.02191 319.8 23.9 
5.306 2.004 0.02094 443.8 23.5 
3.709 1.395 0.02025 600.2 24.2 
2.367 0.886 0.01987 991.6 22.6 
1.343 0.501 0.01965 1862.4 21.1 
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Roder et al. [5]. These points are at densities below 1 tool-L -~ and were 
omitted in the original analysis since they deviated by several percent from 
the high-density data along a given isotherm. Proper application of the 
compression-work correction now allows us to report argon thermal con- 
ductivities down to densities as low as 0.2 mol. L -1. Each reported data 
point is the average of four data points at varying power levels. The revised 
values for thermal diffusivity and heat capacity at low densities are in much 
better agreement with equation-of-state predictions. We estimate that the 
uncertainty in the thermal conductivity data reported in Table I is _+ 1% 
and the uncertainty in the heat capacity is _+5% except at the lowest 
densities. 

Our thermal conductivity data have been adjusted to nominal 
isotherm temperatures. This adjustment is made with the surface fit 
described in this paper. We have used temperatures on the IPTS-68 scale 
throughout this work for consistency with our previous studies. The equa- 
tion of state of Younglove [8] is used to obtain the densities reported in 
Table I. In addition, this equation of state provides the isobaric heat' 
capacity values which are used to adjust the experimental thermal 
diffusivity and heat capacity values to the nominal isotherm temperatures. 
An improved equation of state has recently been reported by Stewart and 
Jacobsen [9] which is more accurate in the critical region. We have not 
observed significant differences in the densities calculated with the two 
equations of state far from the critical region, so we have continued to use 
the Younglove [8] equation of state to be consistent with the previously 
reported densities. However, we have observed significant differences in the 
compressibilities and in the heat capacities predicted by the two equations 
of state in the critical region. We have, therefore, used the equation of state 
of Stewart and Jacobsen [9] in our present analysis of the critical enhance- 
ment using mode-coupling theory. 

4. LOW-DENSITY ANALYSIS 

Our corrected low-density thermal conductivity data are adjusted to 
nominal isotherm temperatures. These data are fitted to a linear function 
with respect to density for each isotherm. This fit provides the dilute-gas 
thermal conductivity 2 o as the intercept and the first density coefficient of 
thermal conductivity 21 as the slope. The results of this fit are presented in 
Table II. 

Figure 1 shows deviations among our new dilute-gas 20 data several 
correlations [10-13], and the other available data [14, 15, 16, 17, 19, 20]. 
Kestin et al. [10] have presented a comprehensive corresponding states 
correlation for the dilute-gas thermal conductivity 20 of noble gases 
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Table II. Dilute-Gas Thermal Conductivity 20(exp) and First Density Coefficient of 
Thermal Conductivity 2~(exp), Obtained by Linear Regression of Low-Density 

Data up to a Maximum Density of P m J  

m W . m - l . K - ~  mW.L .mo l  -~ .m -~-K -~ 

Z Pmax 
(K) 20(exp) 20(calc ) 21(exp) ,~l(calc) (mol. L -1) 

103.00 6.42 6.38 1.00 1.05 0.340 
113.00 7.00 6.98 1.03 1.05 0.525 
123.00 7.57 7.60 1.08 1.05 0.952 
133.00 8.18 8.23 1.09 1.05 1.523 
142.00 8.69 8.81 1.10 1.06 1.909 
157.00 9.56 9.77 1.05 1.06 1.478 
173.00 10.63 10.77 1.06 1.07 2.517 
203.00 12.39 12.57 1.06 1.07 3.339 
223.00 13.43 13.73 1.08 1.07 3.475 
273.00 16.41 16.45 1.00 1.06 3.489 
302.00 17.70 17.93 1.06 1.05 3.988 
324.00 18.89 19.02 1.06 1.05 4.351 

20(calc) is from Kestin et al. [10], and 21(calc) is from Rainwater and Friend [22]. 

5- 

4 

3- 

".~ 0 
r~ 

' ,  § 

<~ Ref.  20 
�9 Ref .  17 
o Ref. 14 

Ref.  16 
�9 p r e s e n t  w o r k  
x Ref. 19 
§ Ref. 3 
A Ref. 1 
[] Ref. 15 

>r 

100 150 200 250 300 350 400 450 
T e m p e r a t u r e ,  K 

Fig. 1. Deviations between the experimental dilute gas thermal conductivity, 
2o, of argon and the correlation of Kestin etal. [10] as a function of 
temperature. Dashed line shows deviations with the correlation of Rabinovich 
et al. El3]. Solid line shows deviations with the correlation of Trappeniers 1-12]. 
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and their mixtures. This correlation is consistent for both equilibrium and 
transport properties over a wide range of temperature. Younglove and 
Hanley [11] provide a simple polynomial fit for 2o of argon which 
reproduces the Kestin et al. [10] dilute-gas 2o function almost exactly. 4 
The dilute-gas function of Kestin et al. [10] is selected as the baseline for 
the deviation plot in Fig. 1. 

The most recent and comprehensive treatment of the first density coef- 
ficient of thermal conductivity has been given by Rainwater and Friend 
[21, 22]. We restrict our comparisons to their model, which includes two- 
monomer, three-monomer, and monomer-dimer contributions. Nieto de 
Castro et al. [23] have shown that this theory is a good representation of 
the first density coefficient for both monatomic and polyatomic molecules 
over a wide range of temperature. These authors [21-23] define a reduced 
thermal conductivity virial coefficient b;~ by 

3B;~ 
b;~ 2rCNA o.3 (6) 

where B~ = 21/2o, NA is Avogadro's number, and a is the Lennard-Jones 
molecular diameter. The reduced thermal conductivity virial coefficient is a 
universal function of reduced temperature for a given interaction potential 
for monatomic gases; Ref. 23 discusses the application to polyatomic fluids. 
The reduced temperature ( T * =  ka Tie) is defined in terms of the Lennard-  
Jones energy parameter e and the Boltzmann constant kB. 

Figure 2 shows our new experimental thermal conductivity data along 
isotherms as well as lines which are defined by 

2(calc) = 2o(K) + 21(RF) p (7) 

where 2o(K ) is taken from Ref. 10, and 21(RF) is from Ref. 22. The 
calculated values for 2o and 21 are tabulated for each isotherm in Table II. 
Figure 2 shows that the theoretically based expressions for 2o and 21 are in 
good agreement with our revised experimental data. The discussion on 
page 1158 in Ref. 5 can now be completed, namely, once the fluid compres- 
sion-work correction was modified, our experimental results agree with the 
extended law of corresponding states of Kestin et al. [10] to within 2% at 
temperatures between 103 and 324 K. Although slightly different curvatures 
are found for the experimental data and the theoretical predictions, our 
revised results confirm the correlation of Kestin et al. [10] within 2%. 

4 For the remainder of the paper whenever we refer to the dilute-gas function of Kestin et al. 
[10], we mean the dilute-gas function of Kestin et al. [10] as approximated by the polyno- 
mial of Younglove and Hanley [11 ]. 
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Fig. 2. The low-density thermal conductivity of argon. Lines are given by 
2 = 20 + 21P, where ~-o is from Kestin et al. [10] and 21 is from Rainwater and 
Friend [21, 22]. 

5. CRITICAL E N H A N C E M E N T  

A theory describing the divergence of the thermal conductivity in the 
asymptotically critical region has been well developed for pure fluids [241. 
More recently, Olchowy and Sengers have proposed a solution to the 
mode-coupling equations which allows calculation of the thermal conduc- 
tivity enhancement throughout the fluid state [25]; a simplified version of 
this theory, which incorporates an ad hoc procedure and approximates the 
full theory, has also been published [26]. The theory has been used 
successfully to describe transport data of carbon dioxide, methane, ethane, 
helium 3, and water [25-29]. 

The approach involves the approximate solution of coupled integral 
equations with a wave number cutoff (qD) to limit the momentum-space 
range over which critically driven fluctuations can contribute to dynamic 
critical phenomena. Thus, in addition to a knowledge of thermodynamic 
properties and background values of the viscosity and thermal conduc- 
tivity, the single fluid-dependent parameter qD must be fitted to describe 
the critical enhancement contribution. In this work, we have used the 
classical argon equation of state and critical parameters of Stewart and 
Jacobsen [9], the fluid-dependent equilibrium critical amplitudes of 
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Sengers et al. [24], and the scaling law exponents of Olchowy and Sengers 
[25]. Because none of our data are in the asymptotically critical region, we 
do not need a scaling-law equation of state, and the viscosity ~/, which has 
a much weaker critical enhancement than the thermal conductivity, can be 
well approximated by its background contribution. This viscosity is 
calculated with the function of Younglove and Hanley [ 11 ]. 

The thermal conductivity enhancement can be described by [-25] 

R J c .  T p C ,  (;~ _ Oo) (8) 
A2c~ - 6r~r/~ 

where the amplitude Ro has been set to 1.01, k~ is Boltzmann's constant, 
is the correlation length, and g2 and s o are complicated functions of T 

and p as briefly described below. 
The correlation length ~ has been approximated by relating it to the 

critical part of the dimensionless compressibility as in Refs. 25-29. Thus, we 
write 

~Pop](~/')~ap(p, T) _ (Tr ' ]  Op(p, r ,)  ]("/,) 
r L aP T \ TJ  aP T (9) 

In Eq. (9) v and 7 are universal scaling exponents, while F and go are fluid 
specific amplitudes. The temperature at which the background com- 
pressibility has been identified with the total compressibility, so that the 
critical contribution vanishes, is not well defined. This temperature Tr is 
well above the critical temperature and has variously been defined as 1.5Tr 
approximately 2To, and 2T~ in Refs. 25-29. Because our argon data clearly 
indicate an enhancement for isotherms above 2T~ (303 K), we have 
increased the value of Tr to 2.5Tc. The correlation length for critical 
fluctuations, and hence the critical enhancement, vanishes above this 
temperature; thus, both ~ in Eq. (7) and A2or in Eq. (8) should be set to 0 
for temperatures above 2.5To. The choice of Tr is arbitrary, and affects 
the calculated enhancement only at temperatures well above the critical 
temperature. 

The function f2 in Eq. (8) can be evaluated using the parameters 

and 

YD = qo 

y'7 = c v / ( c p  - c o  

y~, = ( kB TMp )/( 8zc~12 ~ ) 

Ye = [(2o + 2ex) M]/Etl(Cp - C~)] 

(10a) 

(10b) 

(10c) 

(lOd) 

Ya = {tan-l[qD~/( 1 + q~2) , /2]  _ tan-~(qD~)}/(1 + q2~2)1/2 (10e) 
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where M is the molar mass and the other variables have been defined 
above. The final expression for f2 from Refs. 25, 26, and 28 has been sim- 
plified [29,30] by evaluating the mode-coupling integral in closed 
algebraic form; the matrix-inversion algorithm, required to use the results 
reported by Sengers and Olchowy [25, 26, 28], is no longer necessary. We 
can write 

2 [ 4 Ig(zi)(l_z~)-l/2i]4iej=l(Zi_Zj ) Y +Z 
i = 1  

• ( i - z i+(1 - z~ ) l / 2 tan - l (~ ) l l l - -  (11) 

- z ,  (1 z )l/2tan-l( )JJJ 
The auxiliary function g(z) is defined by 

g(z) = --YD Y~ z3 + (Yr -- YB-- Y~ Y~) z2 -- Yr YD y~z + y2 _ y~ ya y~ (12) 

and zi are the roots of the quartic equation 

4 

H (Z - -  Zi) = Z 4 -]- y~ y D  Z3 -'}- (yr + ya + yay~) z 2 
i=1 

+ Y ~ Y D Y ~  z +  Y~YaY~ = 0  (13) 

The roots can be found in closed algebraic form by standard procedures 
such as that described in Section 3.8.3 of the handbook of Abramowitz and 
Stegun [31 ]; in that case, the first two roots are typically real and the final 
two roots are complex conjugates. The expression in Eq. (11) is real, 
although the arguments may be complex. Our definition of the zi differs by 
a minus sign from that published in Refs. 25, 27, and 29. 

The final term Oo in Eq. (8) represents the contribution of dynamical 
fluctuations to the thermal conductivity, which is caused by the long-time 
tail of their correlations [25-28]. This term must be subtracted in Eq. (8) 
so that the experimental thermal conductivity well away from the critical 
region can be identified with the background thermal conductivity; these 
contributions are thus included in the background correlation rather than 
in the enhancement term described by Eq. (8). We have retained the 
empirical term proposed by Olchowy and Sengers [25-28] but have 
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slightly revised the denominator appearing in 120. The term 120 is defined 
by 

{ [ --qD~ ] (  
2 l - - exp  l+(q-~D-~-y-2 2 pj3p ) J J  

12o = (14) [ I + y ~ Y D + ( I  

The term 12o rigorously cancels 12 to lowest order in an expansion about 
qD~ =0,  that is, well away from the critical point. We have removed the 
term in the denominator of 12o which does not explicitly contribute to the 
term cancellation; other higher-order terms remain in the exponential and 
the denominator. Our revision of 12o has only a small effect on the enhan- 
cement calculated from Eq. (8) since its contribution is important only to 
points far from the critical point where the total enhancement is negligible. 

We chose values for the universal and fluid-dependent parameters 
as indicated above: Rc = 1.01, v = 0.63, 7 = 1.2415, To = 150.6633 K, 
p~=13 .29mol .L  1, pc=4 .860MPa,  F=0.075,  and ~o=0.16nm. With 
Tr = 2.5T~ we will find the optimum value for q~m which satisfies both our 
critical enhancement data and the data of Trappeniers [12], which are 
much closer to the critical temperature. This optimum value is found to be 
q ~ l =  0.200 nm. The calculated thermal conductivity critical enhancement 
along the critical isochore from this function is plotted along with the 
available experimental data from Refs. 5, 12, 32, and 33 in Fig. 3. Devia- 

v 

E 

100- 
[] 

[] 
[] 

• Re f .  32  - ~  

~E + Ref .  3 3  
[] Re f .  12 ~ +  

�9 Ref .  1 
,< 
<3 

, o  

o.1 . . . . . . . .  i . . . . . . . . . . . . . .  , 
o.oool o.ool ' .  o'.ol o.1 . . . . . . . .  

AT , (T-T c) �9 Tc "1 

Fig. 3. The variation of A2c, with reduced temperature AT*= (T-Tc)/T~ 
along the critical isochore. Line is given by Olchowy and Sengers [25], with 
qSl = 0.200 nm and Tr = 2.5Tc. 
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tions between the calculated critical enhancement and the Trappeniers 
1-12] data at temperatures within 1 K of the critical temperature are 
probably due to the use of the classical equation of state of Stewart and 
Jacobsen I-9] to evaluate the critical enhancement using the Olchowy- 
Sengers theory. 

6. T H E R M A L  CONDUCTIVITY SURFACE 

We have demonstrated above that the theoretically based expressions 
for 2 o and 2~ are in good agreement with our thermal conductivity data for 
argon. Adopting the traditional technique of breaking the thermal conduc- 
tivity into three terms, we have 

)~ = )oo(T) + 2~x(T, p)  + A2cr(T, p) (15) 

We first look at the thermal conductivity surface we developed in 
Ref. 5 and then develop the new surface. To make the comparison consis- 
tent, we substitute the corrected data and we use the 2o(T) function of 
Kestin et al. [10] with our empirical surface of Ref. 5. The uncertainty in 
the thermal conductivity surface at 95% confidence is +3.4%, with large 
deviations in the vapor and liquid isotherms close to the critical tem- 
perature. A plot of the deviations for this conductivity surface is given in 
Fig. 4. Even though JLe• is a function of both temperature and density, we 

12 
O 

1 0 -  

8 -  �9 

-4 i -~B . . . . . .  : +  . . . . . .  + . . . . . . . .  + ' ~ -  --+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 
- 8  1 , , , , , 

o e 12 18 24 so 3e 
Dens i ty ,  mol �9 L "I  

Fig. 4. Deviations between our experimental thermal conductivity data and 
the correlation, 2=2o+2~x+A2,, where 20 is from Kestin etal. [10] and 
where 2~x and A2~ are empirical as given in our previous correlation I-5]. 
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can distinguish individual isotherms on this deviation plot at liquid 
densities. 

We now turn to the new surface, where we use the function of Kestin 
et al. [10] for ;to(T ) and the function of Olchowy and Sengers [25], with 
Tr = 2.5 and q ~ l =  0.200 nm, for A2cr(T, p). In addition, we use the results 
on the first density coefficient of the thermal conductivity by Rainwater and 
Friend [21, 22] as follows. Table II shows that the 21(T ) function of 
Rainwater and Friend [22, 23], as well as the experimentally obtained 
values, is very nearly temperature independent, with an average value of 
1.06 m W . L - m o 1 - 1  -m 1. K-1.  We assume 2ox to be temperature inde- 
pendent over the range of our data. We next propose a simple polynomial 
in density for the thermal conductivity excess function, 

~'ex = 0~IP q- 0r 2 -1-  ~3P 3 ~- @4P 4 (16) 

In general, the coefficients c~i could be functions of temperature, but we 
assume that they are temperature independent. The term cq is the first den- 
sity coefficient of thermal conductivity. These four coefficients in Eq. (16) 
will be selected to minimize errors between our experimental thermal con- 
ductivity data and the surface of Eq. (15). The four optimized coefficients 
a r e  

cq=  0.757 894x 10 3 

~2 = 0.612 624 x 10 - 4  

c% = -0.205 353 x 10 -5 

c~ 4= 0.745 621x 10 - 7  

where p is in mol- L -  1 and 2e~ is in W.  m -  1. K -  1. Deviations between our 
data and the resulting fit are shown in Fig. 5. The deviations in Fig. 5 are 
_+2.2% at the 2-sigma confidence interval. The agreement is quite good, 
especially considering that it covers the liquid, vapor, and supercritical gas 
phases. Only five adjustable parameters have been used in the development 
of this thermal conductivity surface. These parameters are qD 1 in the mode- 
coupling critical enhancement function and the four c~i coefficients in the 
excess function. The deviations along the near-critical temperature liquid 
and vapor isotherms which are so pronounced in Fig. 4 are not present in 
Fig. 5. 

We have not constrained the coefficient cq to be equal to the average 
theoretical value of fil which is predicted by Rainwater and Friend [.22]. 
Nor is it possible to do so. Given the form of Eqs. (8) and (16), there must 
be two contributions to the first term in density, one from the thermal 

840,,'12/6-3 
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Fig, 5. Deviations between our experimental thermal conductivity data and 
the new correlation, 2 = 2 o + 2,x + A2cr , where 2 o is from Kestin et al. [10]. 2ox 
is taken to be temperature independent, based on the first density coefficient 
theory of Rainwater and Friend [-21, 22], and is defined by Eq. (16), while A,~cr 

is from Olchowy and Sengers [25]. 

conductivity excess function and one from the critical enhancement. Thus, 
even when a thermal conductivity surface is developed using as strong a 
theoretical basis as we have in this paper, ambiguities in the determination 
of the thermal conductivity excess function remain. 

7. CONCLUSIONS 

In our previous paper [5],  we recommended that a new effort be 
undertaken to correlate the thermal conductivity of argon at low tem- 
peratures. This paper  presents the results of such an effort. Recent theoreti- 
cal expressions for 2o(T) and 2~(T) allowed us to detect an error in our 
data analysis procedure which affected the argon data at densities below 
5 mol.  L-~. This error arises from an incorrect volume in the fluid com- 
pression-work correction. When corrected, our low-density argon heat 
capacities are in much better agreement with values calculated from the 
Younglove equation of s t a te  [8] ,  confirming a better heat balance on our 
transient hot-wire system. Thus, we may use thermal diffusivity as a cross 
check of the reliability of thermal conductivity data, even at low densities. 

Our corrected low-density thermal conductivity data are in very good 
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agreement with the function for 20(T) of Kestin et al. [10] and the func- 
tion for 21(T) of Rainwater and Friend [21, 22]. In addition, when we 
consider all of our data, we find that the function for A2or(T,p) of 
Olchowy and Sengers [25] is a good representation for the critical enhan- 
cement. Using these theoretically based functions we can optimize the ther- 
mal conductivity excess function to produce a much improved thermal con- 
ductivity surface. The uncertainty for the new surface at a 95 % condidence 
interval is _+ 2.2 %. The surface provides an accurate representation of our 
argon data from 100 to 324 K in the liquid, vapor, and supercritical 
regions. 

A copy of the computer program which generates the low-temperature 
argon thermal conductivity surface may be obtained by writing to R.A. 
Perkins. 
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